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SUMMARY

The photopolymerization of multifunctional acrylates leads to the formation

of a complex and insoluble network due to cross-linking. This characteristic is a

useful property for stereolithography applications, where solid parts of the desired

shape are cured using a pre-determined energy exposure profile. Traditionally, the

required energy exposure is determined using a critical energy–depth of penetration,

or Ec–Dp, model. The parameters Ec and Dp, are usually fit to experimental data at

a specific resin composition and cure intensity. As a result, since the Ec–Dp model

does not explicitly incorporate cure kinetics, it cannot be used for a different set of

process conditions without first obtaining experimental data at the new conditions.

Thus, the Ec–Dp model does not provide any insight when a new process needs to be

developed, and the best processing conditions are unknown.

The kinetic model for multifunctional acrylate photopolymerization presented here

is based on a set of ordinary differential equations (ODE), which can be used to pre-

dict part height versus exposure condition across varying resin compositions. Kinetic

parameter information used in the model is obtained by fitting the model to double

bond conversion data from Fourier Transform Infrared Spectroscopy (FTIR) mea-

surements. An additional parameter, the critical conversion value, is necessary for

determining the formation of a solid part of the desired height. The initial rate of

initiation, Ri, combines all the factors that impact part height, and therefore, it is an

important quantity that is required in order to find the critical conversion value. The

critical conversion value is estimated using the Ri and Tgel value from microrheology

measurements.

Information about network connectivity, which can be used to get properties such

x



as molecular weight, cannot be derived from models using traditional mass-action

kinetics for the cross-linking system. Therefore, in addition to modeling the reaction

using the ODE based model, the results from a statistical model based on Kinetic

Monte Carlo (KMC) principles are also shown here. The KMC model is applicable

in situations where the impact of chain length on the kinetics or molecular weight

evolution is of interest. For the present project, the detailed information from network

connectivity was not required to make part height predictions, and the conversion

information from the ODE model was sufficient.

The final results show that the kinetic ODE model presented here, based on the

critical conversion value, captures the impact of process parameters such as initiator

concentration, light intensity, and exposure time, on the final part height of the object.

In addition, for the case of blanket cure samples, the part height predictions from the

ODE model make comparable predictions to the Ec–Dp model. Thus, the ODE model

presented here is a versatile tool that can be used to determine optimum operating

conditions during process development.
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CHAPTER I

INTRODUCTION

1.1 Photopolymerization of multifunctional acrylates

The photopolymerization kinetics of multifunctional acrylates have been studied ex-

tensively since these polymers are used in a wide range of applications from lithogra-

phy and coatings, to biologically related uses such as dental composites and contact

lenses [3]. The vinyl bonds on acrylates react readily in the presence of radicals,

and in the case of multifunctional acrylates, which have multiple vinyl groups per

monomer, reactions between distinct chains are also possible. These types of reac-

tions, known as cross-linking, bind different polymer chains in the reaction volume

into an insoluble network. Several hydrogels that are used in tissue engineering are

non-toxic derivatives of acrylates, and the cross-linking abilities of multifunctional

acrylates are often exploited in these scenarios [9, 23].

Cross-linking does not take place in photopolymerization of monofunctional mono-

mers, as shown in Figure 1. Since all the chains formed will be linear, the resulting

polymer network is soluble. In contrast, the cross-linked networks formed by multi-

functional monomers are insoluble. This durability is a desirable property in stere-

olithography applications, where polymer parts of various shapes are prepared using

a computer generated exposure profile [17, 27, 32]. In photopolymerization, radicals

are generated from the initiator when they receive energy from UV light. Based on

the desired shape of the final object, the energy delivered to each area of the resin

vat can be controlled to cure to the exact depth. By understanding the kinetics of

polymerization, the cured shape and properties can be controlled more accurately. In

addition, statistical methods of simulating the reaction sequence, such as the Monte
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Multifunctional case: Cross-linking exists.

Cross-linked network:

Monofunctional case: No cross-linking. 

Figure 1: Simplified schematic of acrylate crosslinking.

Carlo method, can be used along with experimental methods to improve understand-

ing of the photopolymerization reactions. Figure 4 contains an outline of how we

developed the model and associated parameters.

1.2 Scope of this project

The exposure profiles used in stereolithography are typically generated using the re-

lationship between the critical energy dose (Ec) and the associated cured part height

(Dp) for a specific resin composition. This exposure profile is fed to a digital micro-

mirror device (DMD) which can be used along with UV light to cure the pre-polymer

resin, as shown in Figure 2. A DMD is an array of microscopic mirrors that can

be turned ON or OFF individually. If the desired part requires high precision, the

accurate determination of the critical energy required for cure becomes important.

Traditional Ec–Dp models are designed to make predictions for a specific resin com-

position, since they do not explicitly incorporate the cure kinetics. Presented in the
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Sample 
holder

45
Mirror 

Cured
solid

Model that outputs the 
energy dose profile in 
the form of a bitmap

UV Light

DMD

Pre-polymer

CAD model

X

Z

0

ZY

Bitmap 
generated 
from model

Laser

Figure 2: Simplified schematic of a stereolithography system. Typically, the digital
micro-mirror device (DMD) receives the exposure profile from a bitmap representation
of a computer aided design (CAD) model. The sample holder shown here has a curved
bottom, which means that the part formed on top of this surface will retain that
curvature.
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Chapter 3

Estimating kinetic parameters from FTIR data

Chapter 4

Estimate critical conversion value for determining cure depth

Chapter 2

Types of models, and  their descriptions

Chapter 5

Comparing part height prediction from ODE model to Ec—Dp model 

Joint fit of ODE model to FTIR, and microrheology data

Chapter 1

Introduction and scope of this project

Chapter 6

Conclusions and discussion of contributions

Figure 3: Outline of the chapters in the thesis

following chapters is a versatile model that is adaptable to changes in resin composi-

tion and is capable of representing the reactions occurring in the system.

Figure 3 contains a chapter outline. Chapter 2 describes models that are typically

applied to predict polymerization reactions, and it also contains a description of the

models used here. Chapter 3 shows all the Fourier Transform Infrared Spectroscopy

(FTIR) experimental data, as well as the rate constants estimated from fitting to

this data. In Chapter 4, the degree of cure necessary for making a solid part is

obtained from fitting to the gel time data from microrheology. Finally, in Chapter 5,

part height predictions from the ODE model are compared to an Ec–Dp model. The

4



versatile model presented in this thesis is capable of predicting cure height at various

resin compositions, intensity levels and other initial conditions, because it includes

cure kinetics.
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CHAPTER II

MODELS FOR PREDICTING POLYMERIZATION

The typical reactants in a photopolymerization reaction are initiator molecules, In,

free radicals generated by initiators, R•, polymer chains, P , monomers, M , oxygen,

O2, and solvent. The dynamic concentration of each of these species can be described

through a mathematical model based on the reaction mechanism. The reaction mech-

anism shown in Equations (1)–(10) is used in most photopolymerization simulations.

Some models do not distinguish between a live chain, P•, and a primary radical, R•,
in which case the sum of R• and P• equals the total number of active radicals or

active sites. The first step is a decomposition event where an initiator molecule is

decomposed to generate two radicals.

In
kd→ 2R• (1)

Then, the radical is free to react with a monomer, thus initiating a polymer chain.

R •+M
kp→ P• (2)

Polymer chains propagate via reactions with available vinyl bonds that are on monomers,

or on other polymer chains. When a reaction with vinyl bonds on polymer chains

occurs, as in the case of multifunctional acrylates, the polymer becomes bigger.

P •+M
kp→ P• (3)

P •+R• kp→ P • • (4)

P •+P• kp→ P • • (5)

The reactive radical centers on polymer molecules, as well as live radicals, are termi-

nated by reacting either with a free radical or a radical that is on a chain to make dead

6



polymer chains, Pdead and dead radicals, Rdead. Termination can occur either through

combination or through disproportionation, and often both mechanisms are present

for a given acrylate [3]. In the case of vinyl monomers, which include acrylates, it

has been found that termination occurs mostly via combination [22]. Other possible

effects are chain transfer to monomer and polymer, and molecular weight dependent

termination caused by steric hindrance effects in propagation and termination events

[19].

R •+R• kt→ 2Rdead (6)

P •+P• kt→ Pdead (7)

P •+R• kt→ Pdead (8)

In addition to the propagation and termination reactions, oxygen in the reaction

volume acts as a radical scavenger, and inhibits the propagation and termination

reactions.

R •+O2
ktoxy→ Rdead (9)

P •+O2
ktoxy→ Pdead (10)

Equations (1)–(10) contain the typical reactions that take place in photopolymer-

ization systems. These reactions can be simulated through models for photopoly-

merization, which can be divided into three categories: (A) non-connectivity based

continuous models, such as a set of ordinary differential equations, (B) stochastic and

discrete models that track the spatial location of all reactants, and (C) stochastic and

discrete models that are non-spatial. The model selection will depend on the type of

output information desired.

2.1 Continuous Models

In the case of monofunctional acrylates, the dynamic concentration of all the species

in a well mixed bulk reaction volume can be defined by a set of ordinary differential

7



equations (ODEs) such as the ones shown in Equations (11)–(16).

d[In]

dt
= −kd[In] (11)

d[R•]
dt

= 2kd[In]− kp[M ][R•]− 2kt[P•][R•]− 2kt[R•]2 − ktoxy[O2][R•] (12)

d[M ]

dt
= −kp[M ][R•]− kp[M ][P•] (13)

d[P•]
dt

= kp[M ][R•]− 2kt[P•]2 − 2kt[P•][R•]− ktoxy[O2][P•] (14)

d[Pdead]

dt
= kt[P•]2 + 2kt[P•][R•] + ktoxy[O2][P•] (15)

d[O2]

dt
= −ktoxy[O2][R•]− ktoxy[O2][P•] (16)

Since all resulting polymer chains from monoacrylates will be linear, there will be

no effects such as cross-linking that need to be accounted for. A model based on

these equations can still be used to track the double bond conversion, radical con-

centration and oxygen concentration in multifunctional acrylate systems. However,

the cross-linking property shown in Figure 1 of the multifunctional groups is not rep-

resented. The lack of network connectivity information in this model indicates that

the concentration of polymer chains, dead or alive, P• or Pdead, cannot be computed.

Additionally, in the case of multifunctional monomers, although the number of double

bonds that have reacted can be tracked, the number of monomers that have poly-

merized cannot be computed. This type of connectivity information is once again

necessary to compute the molecular weight of the gel in a multifunctional system.

Other network details such as the location of a monomer or polymer chain, are also

not modeled by traditional mass action kinetics in either mono- or multifunctional

acrylates. Despite these limitations, the solutions to the ODEs in Equations (11)–(16)

are used here to estimate rate constants in a multifunctional system, by comparing

to experimental measurements for the earlier stages of reaction.

The rate of initiator decomposition for photopolymerization depends on the con-

centration of the initiator, the intensity of the light source, and the depth into the

8



absorbing medium [25]. Using the Beer Lambert law, the rate of initiator decompo-

sition as a function of depth, z, into the sample has been developed [25]:

I ′abs = I0 − I0e
(−2.3ε[In]z) (17)

Iabs =
dI ′abs
dz

= 2.3ε[In]I0e
(−2.3ε[In]z) (18)

Rd = φIabs

(
λ

NA h c

)
= φ

(
2.3ε[In]I0e

(−2.3ε[In]z)
)( λ

NA h c

)
(19)

A combined rate constant term kd, can then be described as follows:

kd = 2.3φεI0e
(−2.3ε[In]z)

(
λ

NA h c

)
(20)

such that Rd = kd[In], and the rate of initiation, Ri = 2Rd.

Here, [In] is the concentration of the initiator, I0 is the incident intensity of the

light source, and Iabs is the absorbed intensity integrated up to z. In order to convert

the intensity into moles of photons per unit volume, the wavelength of the light in

nanometers, λ, Avagadro’s number, NA, Planck’s constant, h, and speed of light c,

were used. φ is the quantum yield of initiation, and it indicates the efficiency of

a radical in initiating a polymerization event [25]. ε is the molar absorptivity of

photons for a given initiator, it depends on the wavelength and temperature, and it

can be determined experimentally by measuring the absorption for known quantities

of initiator concentrations in a solvent of known absorption [25]. The combined term

kd can also be experimentally determined from the half life of the initiator and the rate

of change of initiator concentration, as shown in Equations (21)–(23) [25]. Typically,

values of kd for photoinitiated radical polymerization are in the range of 10−3–10−1

mol/m3-s [25].

[In] = [In]0e
−kdt (21)

ln

(
[In]

[In]0

)
= −kdt (22)

9



When half of the initiator concentration is consumed, the time is t1/2. Using this

information, kd can be calculated as follows:

kd =
0.693

t1/2
(23)

The rates of propagation and termination are affected by diffusion limitations and

thus they may vary at different times during the reaction. In order to determine these

variations in the reaction rate constants, a critical free volume parameter, fct, can be

used. This dependence is used by Goodner et al. in describing the rate constants for

propagation and termination, as shown in Equations (24)–(25) [9].

kp =
kp0 exp(−Ep/RT )

1 + exp(Ap(
1
f
− 1

fcp
))

(24)

kt = kt0exp(−Et/RT )

(
1 +

1

Rrd kp[M ]/kt0 exp(−Et/RT ) + exp((−At(1/f − 1/fct)))

)−1

(25)

In the above analysis, it is assumed that there is no oxygen in the system, so

the rate constant for oxygen quenching is zero. The constants “kp0 and kt0 are the

pre-exponential factors for the true kinetic constants” [9]. When the fractional free

volume, f , of the system is greater than the critical free volume, fct, the polymeriza-

tion is reaction limited, and when the fractional free volume is less than the critical

free volume, the polymerization is diffusion controlled. The constants Ep, Et, Ap, At

and Rrd are parameters specific to the particular monomer.

Differential photocalorimetry (DPC) is a method used to measure the instanta-

neous heat generated during a reaction. By relating the heat generated to the propa-

gation rate, rate constants, the rate constants kp and kt can be isolated. Continuous

irradiation experiments are run to estimate the ratio of kp/
√
kt and flash exposure ex-

periments are run to estimate the ratio kt/kp from the dark reactions. By combining

these measurements, kp and kt are determined independently at various conversion

levels for a specific temperature [28]. This data can be used to estimate the constants

10



in Equations (24) and (25). By applying the simplifying assumptions that there is

continuous irradiation with no oxygen, and the total live radical concentration is at

steady state (when the rate of initiation equals the rate of termination) Equations

(11)–(16) can be condensed. Using the simplified equations, the radical concentration

and change in the monomer concentration with respect to time can be described as

shown in Equations (26) and (27).

[R•]ss + [P•]ss =
√

kd[In]

2kt
(26)

d[M ]

dt
= kp

√
kd[In]

2kt
[M ] (27)

The double bond conversion, α, of multifunctional monomers, can be calculated with

Equation (28). [M ] is usually the concentration of monomers in the in the system,

but when finding double bond conversion, [M ] needs to be multiplied by the number

of functional groups.

α =
[M ]0 − [M ]

[M ]0
(28)

The rate of monomer disappearance, Rp = −d[M ]
dt

, is related to the exotherm of the

reaction. The value of [M] at any point in the reaction can be determined from the

heat removed, which is proportional to double bond conversion. The quantity kp/
√
kt

shown in Equation (29) is calculated, assuming the radical concentration is at steady

state.

kp√
kt

=
−d[M ]/dt√
kd[In][M ]

(29)

By analyzing the reaction occurring in the DPC pan after the light has been turned

off, (i.e. kd = 0), the ratio kt/kp can also be defined using a combined variable for all

live radicals in the system, P ∗•:

[P ∗•] = [P•] + [R•] (30)

Using this combined variable P ∗•, Equations 12, 13 and 14 can be combined to get:

[dP ∗•]
dt

= −2kt[P
∗•]2 (31)
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d[M ]

dt
= −kp[M ][R•]− kp[M ][P•] = −kp[M ][P ∗•] (32)

Rearranging Equation (32) by using [P ∗•] gives

[P ∗•] = −d[M ]/dt

kp[M ]
=

Rp

kp[M ]
(33)

Integrating Equation (31) after plugging in Equation 33, one gets

[M ]

Rp
= −2

kt
kp

t+
[M ]0
Rp0

(34)

Therefore, the slope of the plot of [M ]/Rp vs. time equals −2kt/kp. From these

two ratios, namely kp/
√
kt and kt/kp, the values of kp and kt can be independently

determined. In one such experiment for a system of DMPA as the initiator, and

the tetraacrylate monomer ethoxylated pentaerythritol tetraacrylate (E4PETeA), kp

values in the range of 0.04 to 15 m3/mol-s over various temperatures were reported

[28]. Similarly, the values of kt for the same system were between 0.3 to 3900m3/mol-

s [28]. In general, the values of kp for free radical polymerizations are between 10−1

and 10 m3/mol-s, and those for kt are in the range of 103 to 105 m3/mol-s [25].

In a technique known as pulsed laser polymerization–size exclusion chromatogra-

phy (PLP-SEC), kp and kt can be determined independently by exposing the sample

to short pulses of light [25]. With each pulse of light, free radicals are generated,

and when the light is turned off, propagation dominates due to the relatively large

number of monomers in comparison to the radical concentration. Subsequent pulses

of light on the same sample can be used to determine the degree of polymerization

associated with each pulse of light, labeled Li in Equation (35).

Li = ikp[M ]tp (35)

Here, i refers to the cycle of the pulse, and tp indicates the time of the pulse. The

degree of polymerization for the chains that have propagated through i pulses, Li, is

determined from the SEC measurement of the polymer molecular weight distribution,

through which the value of kp can be determined [25].
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Loss of radicals to oxygen, known as oxygen inhibition, is a problem that is perva-

sive in polymerization involving radicals [6, 19, 25, 11, 24]. Oxygen competes strongly

for the radicals to form a stable peroxy radical as seen in Equations (9) and (10).

Until most of the oxygen in the reaction volume has been used up, via reaction with

radicals, there is very little consumption of the monomer [6]. It is possible to either

exclude oxygen by performing the reaction in a nitrogen purged chamber, or to mini-

mize the oxygen diffusion into the sample once the reaction starts. One such method

of minimizing oxygen diffusion is described by Lovestead et al. [19, 25], where they

suggest that using a light source with different wavelengths might allow for quicker

oxygen elimination. The lower wavelength, which can only penetrate a few microns

deep into the sample, cures the top layer and seals off any additional oxygen diffusion

into the sample. The higher intensity wavelength can then be used to cure the rest

of the sample, which can proceed once the pre-dissolved oxygen is consumed.

2.2 Stochastic models

Kinetic Monte Carlo simulations, which determine the reaction sequence based on the

probability of each possible event, can be used to predict the double bond conversion

and also the molecular weight distribution and network connectivity. Since polymer-

ization reactions can be considered as random events, using simulations in a large

enough reaction volume should accurately reproduce the reactions in a bulk system

[8]. Monte Carlo simulations are based on the Gillespie algorithm, which computes

the probability for all possible reactions. The next reaction that will occur out of n

possibilities in the reaction volume is selected from this probability distribution [8].

Random numbers ξ1 and ξ2 are used in this selection, as shown in Equation (37):

Rtot =

n∑
ν=1

Rν (36)

μ−1∑
ν=1

Rν < ξ1Rtot ≤
μ∑

ν=1

Rν (37)
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The associated time τ required for this reaction to take place is given by Equation

(38); thus both the reactions and a physical time can be predicted.

τ = − ln(ξ2)

Rtot
(38)

2.2.1 Stochastic spatial models

Lattice based models are often used along with random numbers to simulate a reac-

tion volume when the spatial location of each reactant molecule is part of the desired

output information, or necessary to model the reactions. The probability of reac-

tion selection can be based on the free volume of the reactants, diffusion limitations

present in the distance between reactants, or reaction rates of all the possible pairs,

to name just a few possibilities. For instance, a sufficiently large lattice (determined

via comparison of simulation results with the experimental data) with randomly po-

sitioned reactants is one example of the simulated reaction volume. Not all spatial

models of photopolymerization calculate the physical time, and this is especially true

of lattice based models which focus on the spatial position of all species rather than

the physical time required for these molecules to move [1, 3, 13, 20, 30]. Early spa-

tial stochastic models contained reactants at fixed positions on the lattice, and thus

lacked mobility [20], but newer models have been developed to give the molecules

more mobility, allowing both initiators and polymers to move between lattice points

[30]. In some cases, the reactants are allowed to move away from the lattice sites, and

assume intermediate distances determined through Lennard-Jones rules of attraction

[13].

The first kinetic gelation model by Manneville et al. [20] was for co-polymerization

with immobile species. The monoacrylate and diacrylate molecules each occupied

a single lattice site. Instead of using a reaction rate to determine the number of

initiators that should decompose, an active radical was selected at random and allowed
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to move to an adjacent monomer site, which indicated a reaction. In this manner,

molecules reacted and changed their status, although they never moved from their

original positions.

In the lattice model described by Bowman et al. [3], the homopolymerization of

diacrylates is simulated using a face centered cubic lattice to represent the reaction

volume [3]. They incorporate some void sites, and in a break from the usual assign-

ments, each monomer occupies three adjacent sites, and the initiator occupies two

adjacent sites. All the species involved, namely the polymer, monomer, solvent and

initiator, can move as long as there is an adjacent unoccupied site, and all bonds

are preserved. Assigning each diacrylate to multiple lattice sites assures that each

functional group gets the opportunity to react with a reactive center. The rules of

reaction incorporated in this simulation state that a given reactive center can propa-

gate with any one of the nearest functional groups, which includes double bonds on

polymer chains propagating with other double bonds on chains. Although this model

provides connectivity information, the spatial proximity is not realistic due to the

constant distance between each site. This was not a particularly important aspect in

this paper because it did not impact the predicted double bond conversion trend at

various initiator decomposition rates.

Based on polymerization snapshots, Bowman et al. were able to arrive at the

same value as the experimentally determined maximum conversion. They were also

able to confirm the logic that in the earlier stages of reaction, the pendant double

bonds (double bonds on diacrylates, with one double bond on that monomer already

reacted) react more readily than the monomeric double bonds, but as the conversion

increases, it is harder for the pendant double bonds to react due to effects such as

shielding and trapping. Since the rate constants used in this model were proportional

to each other, and not representative of a true time scale, a physically meaningful

time was not calculated.
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Wen et al. [30] describe a lattice based simulation which incorporates the calcula-

tion of a physical reaction time. The heterogeneous network formation which occurs

during the polymerization of multifunctional monomers is simulated on a 40 x 40 x

40 simple cubic lattice, and they use simple rules of motion for the reacted molecules.

Each one of the lattice corners represents a monomer or an initiator. At the start of

the simulations, the user inputs the lattice size, initiator concentration, rate constants

and the primary cyclization enhancement factor. The propagation rate constant in

the simulations is related to the experimentally observed value, and once the initiators

and monomers are randomly distributed on the lattice, the next active radical that

will react is randomly selected, based on the sum of all the reactions it can have with

its neighbors. These surrounding molecules can be functional groups, active radicals

or non-reactive sites. Once the next active site is selected for reaction, the local re-

action probabilities are used to determine which neighbor it will react with and the

time step equation described earlier in the Gillespie algorithm is used to calculate

the time required for that reaction. After the status of all the reacted molecules is

changed, the time step is checked to see if decomposition of any initiators could have

taken place simultaneously during the reaction, and the initiator decomposition is

also updated.

Unlike the lattice model by Bowman et al. [3] described above, the difunc-

tional monomers simulated in this model only occupy one lattice site and none of

the molecules can move. By trying different values of initiation and cyclization en-

hancement, they arrive at the trends that lead to a heterogeneous network. They

conclude that using a higher initiation rate will lead to a more uniform network due

to the higher availability of active radicals. On the other hand, increasing cyclization

which depends on factors such as the monomer length and flexibility of the chain

increases the heterogeneity due to the formation of highly cyclized regions [30]. Both

of these trends, however, lack comparison to experimental data and the location of
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monomers on the lattice sites at equal spaces is not representative of the true reaction

volume.

Hutchison et al. [14] present a model that utilizes the attraction between the

molecules in a given reaction volume. The kinetic gelation model is applied to an

off-lattice simulation, where a simple cubic array of spheres is simulated within a

cubic volume with periodic boundary conditions. At the start of the simulation, the

location of all the monomers is randomized based on minimizing the total energy of

the system and this scheme is continued even after the reaction sequence is started.

The distance between the reactive ends of each diacrylate monomer is specified using

the Lennard-Jones potential energy function and the orientation of the spheres is

random. Thus, the potential energy of a new position is compared with all the other

possible events of that type, and the most probable event is selected with the aid of

random numbers weighted by these potential energies. As the reaction progresses,

the reaction volume contains several separate microgels, which are caused by a single

active site reacting with a cluster of monomers. These clusters were observed in the

previously described models as well, but due to the movement of the particles off the

lattice, the microgels are more prominently visible. Here again, although the selection

of events and movement of molecules, is based on a Monte Carlo method, the physical

time outlined in the Gillespie algorithm is not calculated.

2.2.2 Non-spatial stochastic models

One of the first models to use the Gillespie algorithm for a polymer system without

a lattice was described by Kurdikar et al. [16]. This system also involved multi-

functional monomers, and thus diffusion limitations caused by crosslinking were an

important factor. This effect was acknowledged by relating the initiator efficiency to

the diffusion coefficients of the radicals. The diffusion parameters for the propagating

monomers and polymers were related to conversion with a simple relation dividing
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the diffusion of the monomer in polymer by the degree of polymerization of the poly-

mer. In order to take into account the reactivity of all the functional groups of the

diacrylate, they devised a series of 28 possible reactions that involved differently sized

molecules.

The number of possible reactions would increase as the functionality of the mono-

mer increased. To account for different diffusion effects encountered by the monomers

based on their chain length, the diffusivity of each monomer was normalized with its

chain length. Although this model does not account for the distances between the

reactants, it keeps track of which chain contains each monomer, as well as the status

of each monomer. The extensive reaction event list enumerates all possible reactant

pairs. This could be a lengthy list depending on the functionality of the monomer.

One of the assumptions made in this model is that there are no primary radicals

in the reaction volume. The instantaneous decomposition of an initiator molecule

is recorded by the change of two monomers into two activated monomers. This

chemistry is not necessarily true as it ignores the termination of primary radicals

which can occur when propagation reactions are not favorable. The system sizes

used in this model are significantly higher than those in the lattice based models.

This model had ten million monomer molecules, and an additional 100,000 initiator

molecules which equaled 1% initiator. Using the simulation results they were able to

demonstrate that as the intensity of the light source increases, the rate of conversion

increases. They were also able to show theoretically the number of radicals present in

the simulation volume throughout the entire reaction time. Since they did not aim to

compare their results to experimental data, the model is simply presented as a tool

which can be used to generate multiple realizations to obtain quantitative predictions.

Models that use population balance equations are another example of stochastic

connectivity models that do not track spatial information. Population balance equa-

tions (PBE) are a series of dynamic differential equations that track the different
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properties of each species such as chain length (molecular weight), number of branch

points, and number of radicals on each chain. The complexity of the PBE increases as

the number of identifying characteristics for each species increases. Several different

numerical methods are used to manage the large number of differential equations in

such cases.

2.3 Models used in this thesis

The kinetics of the polymerization reactions can be determined from ODE rate equa-

tion models, such as the ones described in Equations (11)–(16), by fitting them to

experimental conversion data. However, the use of these kinetics to predict part

height may depend on more than the double bond conversion, when the intensity of

light, or the initiator concentration is varied. Although the double bond conversion

predicted by the ODE model and the KMC model are identical, the ODE model lacks

connectivity information and it cannot be used to compute the molecular weight for

multifunctional monomers. Results from a stochastic KMC model, which is capable

of predicting network connectivity information of the resulting polymer, are shown

in Chapter 3.

The ODE model presented here includes the initiation, propagation, termination

and inhibition mechanisms shown in Equations (1)–(10). One-dimensional oxygen

diffusion in the vertical direction is also included to simulate the mobility of oxygen

toward areas that are depleted of oxygen as the reaction progresses. In addition to the

ODEs presented in Equations (11)–(16), a modification to Equation (16), using the

diffusion coefficient Doxy of the oxygen in monomer, accounts for the oxygen diffusion,

as shown in Equation (39).

d[O2]

dt
= −ktoxy[O2][R•]− ktoxy[O2][P•]−Doxy

∂2[O2]

∂z2
(39)

The rate constants used in subsequent part height predictions, were determined by

fitting conversion from the ODE solutions to available deoxygenated, and oxygenated,
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Determined the critical conversion value that indicates cure part using 
gel time from microrheology

Figure 4: Flow chart of ODE model development

FTIR experimental data as described in Chapter 3. This process is outlined in Figure

4.

These rate constants were also used in the KMCmodel to predict more information

about the system such as molecular weight evolution with time. Earlier stochastic

models have described conversion and/or molecular weight, but not always with a

physical time, as discussed in Chapter 1 [1, 3, 13, 20, 30, 16]. Population balance

equations can be combined with KMC principles to predict molecular weight, but the

complexity increases with each added index (molecular weight, conversion, number of

radicals on each chain, etc.) [12, 21]. The KMCmodel used here is capable of handling

both homo- and hetero-polymerization. Although the scope of this project is based on

photo-polymerization, both the KMC model and ODE based model can be adapted to

other polymerization processes by changing the rate mechanisms and rate constants.

At the beginning of the simulation, the reaction volume was determined based on

the desired number of monomers (system size), and the quantities of all other species

were determined. The reaction rates of all the events in this discretized system were

computed using the rate constants and the number of reactants. Using Equations

(37) and (38) the next reaction event and the next set of reactants were selected, and

the time required for this reaction was computed. The species tracked in the model
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included the number of monomers, polymer chains, free double bonds, free radicals,

initiators and oxygen molecules. Using the number of polymer chains, the number

average molecular weight, weight average molecular weight, and molecular weights

excluding the largest chain in the reaction volume were computed. The connectivity

information stored included the number of radicals on each chain, and also which chain

contained each monomer. Since the model is non-spatial, the assumption of a well-

mixed reaction volume is required and this limits predictions to the early conversion

regime. In the scope of this project, the desired information is until the onset of cure,

and therefore the well mixed assumption does not hinder the part height prediction.
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CHAPTER III

ESTIMATION OF KINETIC PARAMETERS

There are four unique rate constants in the ten mechanisms shown in Equations

(1)–(10): rate of initiator decomposition, kd, rate of propagation, kp, rate of radical

termination, kt, and rate of radical termination via oxygen quenching, ktoxy. If it is

assumed that the rate constants are unaffected by chain length at early conversion

up to gelation, the rate constants for all the propagation, termination and inhibition

reactions would be the same. In the case of termination, two possible mechanisms,

termination via combination or termination via disproportionation are generally pos-

sible. However, in vinyl monomers, termination occurs mostly via combination, which

is modeled here [22].

The rate of initiator decomposition, Rd, given in Equation 19, was determined

from a combination of parameters that we measured and from parameters from lit-

erature references. This is detailed in Section 3.2. In Section 3.5 the coupled ODEs,

described in Equations (11)–(15) and Equation (39), were used to estimate propa-

gation, termination and inhibition rate constants from available FTIR experimental

data.

3.1 Materials

2(2-ethoxyethoxy) ethyl acrylate (EEA, SR R©256) and trimethylolpropane triacry-

late (TMPTA, SR R©351) were obtained from Sartomer R©. The photoinitiator 2,2-

dimethoxy-1,2-diphenylethan-1-one (DMPA, IRGACURE R©651) was obtained from

Ciba Specialty Chemicals R©. It should be noted that 125 ppm of Hydroxy Quinone

or 175 ppm of MEHQ are included in the formulation of EEA and TMPTA to in-

hibit polymerization from hydroxy radicals while in storage, and the inhibitor was
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Figure 5: The monofunctional acrylate used in this work is SR R©256 (EEA)
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Figure 6: The trifunctional acrylate used in this work is SR R©351 (TMPTA)

not removed in the experiments, unless specifically noted. The above ppm concen-

trations are equivalent to the molar concentration of oxygen in the sample, but the

exact amount of inhibitor in the monomer at the time of use can vary, and it has

been shown that these inhibitors do not impede the photopolymerization as strongly

as oxygen does [26]. All experiments were neat solutions (containing no additional

solvent) of EEA and TMPTA prepared at varying initiator concentrations (1, 5 and

10 % w/w for EEA, and 0.5, 5 and 10 % w/w for TMPTA).

O

O

CH3

O CH3

2,2-Dimethoxy-1,2-diphenylethan-1-one

Figure 7: The photoinitiator used in this work is IrgaCure R©651 (DMPA)
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3.2 Decomposition kinetics of DMPA

The rate of initiator decomposition for photopolymerization, Rd, from Equation 19,

depends on the concentration of initiator, the intensity of the light source, and the

depth into the absorbing medium [25]. The relationship between the rate constant

kd and all these variables was described in Section 2.1 using Equation (20), which is

shown here again as Equation (40). The quantum efficiency, φ, is a value between 0

and 1 that describes the efficiency of radicals in initiating polymerization events. In

the present case, φ was assumed to be 0.6 since that is a typical value for photoini-

tiators [10]. The molar absorptivity of the initiator, ε, is a parameter that can be

determined experimentally by measuring the absorptivity of TMPTA solutions with

various DMPA concentrations.

kd = 2.3φεI0e
(−2.3ε[In]z)

(
λ

NA h c

)
(40)

The absorbance was measured using a Cary spectrophotometer at 365 nm in dis-

posable cuvettes. First, a cuvette filled with pure monomer was used to determine

the baseline absorbance. Then, three different solutions of DMPA in TMPTA were

prepared at the low concentrations of 0.067, 0.10 and 0.13 wt% , and the absorbance

of each one of these solutions was measured separately. Absorptivity, A, equals

−log10(I/I0) and Equation (41) shows the relationship between absorbance and ini-

tiator concentration. Based on Equation (41), the data from the spectrophotometer

is plotted in Figure 8, as absorbance versus initiator concentration. The absorptivity

can be derived from the slope using Equation (41), and the path length through the

sample, z, which is 1 cm for the cuvette. The final value for the molar absorptivity of

DMPA obtained from these experiments was 15 m2/mol, which was consistent with

reports of 15 m2/mol by other sources [2, 10, 28].

A = −log10(I/I0) = ε[In]z ⇒ ε =
A

z[In]
=

slope

z
(41)
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Figure 8: Molar absorptivity of DMPA at 365 nm
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Figure 9: Schematic of the sample holder used in the FTIR experiments.

3.3 Measurement of double bond conversion with FTIR

3.3.1 In-situ FTIR data with deoxygenated TMPTA

Real time FTIR data from Lee et al. [18] for deoxygenated TMPTA with 1 wt%,

DMPA was used to estimate kp/
√
kt for TMPTA. The experimental methods are

described elsewhere [18]. The data is shown in Figure 14, along with a comparison

to the model.
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3.3.2 Ex-situ FTIR of EEA and TMPTA

The ex-situ transmission-FTIR experiments to obtain double bond conversion α were

performed by Dr. Santosh Rahane at Georgia Institute of Technology. A sample

holder, such as the one shown in Figure 9, was made of two aluminum slabs with

concentric holes, and it was used to expose the monomer solutions to UV-light and

to perform FTIR characterization. First, two polypropylene films with a thickness

of about 65 μm each, separated by a 100 μm thick Teflon R© spacer, were clamped

between the two aluminum slabs. Second, uncured monomer solutions with differ-

ent initiator concentrations were transferred to the space between the polypropylene

films using a pipette. Third, the samples were exposed to UV-light at 365 nm, at

the light intensity of 140 W/m2 on a Spectra-Physics 1000 W Hg lamp, for a de-

sired exposure time. After exposure, the photopolymerized samples were analyzed

using a Brucker FTIR instrument operated in transmission mode. The design of the

sample holder allowed both photopolymerization, and FTIR characterization in the

same setup without removing the polypropylene films from the aluminum slabs. A

total of 100 scans were collected at a resolution of 4 cm−1 to compile the absorbance

spectrum. The double bond conversion was measured using the ratio of areas under

the C=C peaks (PAR) at 1625 cm−1, to the C=O peak at 1720 cm−1. Since the peak

corresponding to asymmetric carbonyl stretching does not change during photopoly-

merization, it acts as an internal standard in the FTIR analysis. The equation used

to compute the double bond conversion is given in Equation (42):

α = 1− PARt

PARt=0
(42)

where PARt is the peak area ratio at exposure time t, and PARt=0 is the peak area

ratio for the uncured resin. Figures 10 and 11 show the data obtained from these

experiments.
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Figure 10: Ex-situ FTIR data for EEA
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Figure 11: Ex-situ FTIR data for TMPTA
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3.4 Simulating polymerization and oxygen diffusion

The double bond conversion data from FTIR shown in Section 3.3 is the average

double bond value through the entire thickness of the sample. In order to simulate

this polymerization using the ODE model, the simulated reaction volume was divided

into thin layers as shown in Figure 23. The reaction volume in each one of these layers

was assumed to be well-mixed, and the polymerization in each one of the layers was

calculated. Oxygen was allowed to diffuse between the layers, and it was ensured

that the diffusion length of oxygen in TMPTA was greater than the slice thickness

used in the simulations. The resulting double bond conversion value in each one of

these slices was averaged, to obtain an average double bond conversion for the entire

sample volume comparable to the experimental data. When dealing with ex-situ

experimental data, the simulation was allowed to run for a minute after the time

of exposure, while the rate of initiator decomposition was set to zero, to simulate

“dark reactions” where any remaining live radicals could propagate or terminate

with surrounding double bonds. The following sections contain a detailed description

of the rate constants obtained by fitting the simulated double bond conversion to

experimental double bond conversion data from FTIR.

3.5 Estimating rate constants from fit to experimental data

3.5.1 Fit to monoacrylate data

Rate constants were fit to the FTIR conversion data, shown in Figure 10, for monoacry-

lates, using the double bond conversion values obtained from a model based on Equa-

tions (11)–(15) and Equation (39). To simulate the reaction volume, the 100 μm

simulated vat was divided into ten layers, each with a thickness of 10 μm. The sim-

ulated vat was 100 μm deep because of the 100 μm spacer used in the ex-situ FTIR

experiments. Oxygen diffusion in one dimension between these slices was also in-

cluded. As a result of this discretization, each slice had a different conversion, and
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oxygen concentration value. The average double bond conversion was obtained by

averaging over all the slices. In addition to the oxygen effect and discretization of the

reaction volume, dark reactions were included when simulating data to match ex-situ

experimental data. Dark reactions are propagation and termination reactions that

occur between any remaining active radicals when the light is turned off, which means

kd=0. To estimate rate constants, kp, kt, and ktoxy, by fitting to the experimental

data, an optimization algorithm in MATLAB R© called pattern search was used along

with the above model. The optimization routine minimized the root mean square er-

ror (RMSE), which was computed using the experimental data y, and the predicted

data ŷ in Equation (43). During this analysis, several different combinations of kp

and kt were found to provide an equally good fit to the data, as shown in Figure 13,

and all these combinations had the identical kp/
√
kt value of 0.3135 (m3/mol-s)0.5.

This is consistent with the analysis of continuous reactions in Section 2.1 where the

importance of kp/
√
kt was highlighted. As it was shown there in Equation 29, only

kp/
√
kt can be isolated from an analysis of continuous reactions, but another data

set, such as one measuring dark reactions, is necessary to separately identify kp and

kt.

RMSE =

√∑n
i=1(yi − ŷi)

n
(43)

Table 1: Parameters used in estimating rate constants for EEA and TMPTA

Parameter Value Units Source
φ 0.6 – [10]
ε 15 m2/mol Figure 8
Intensity, I0 140 W/m2 Measured
[O2]0 1.05 mol/m3 [11, 24]
Diffusion coefficient for O2 1e-10 m2/s [24]
Molecular weight EEA 188 g/mol Sartomer
Molecular weight TMPTA 296 g/mol Sartomer
Molecular weight DMPA 256 g/mol Ciba
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Figure 12: Fit to monoacrylate IR data shows that the best fit kp/
√
kt is 0.3135

(m3/mol-s)0.5. Here, kp = 9.6, kt = 937.9, and ktoxy = 285500. All the rate constants
have units of m3/mol-s.

3.5.2 Fit to in-situ FTIR data of deoxygenated TMPTA

Monoacrylate conversion data reaches high conversions, close to 100%, unlike the

TMPTA data shown in Figures 11 and 14. Cross-linking in multifunctional acrylates

causes the onset of gelation at early conversion, which leads to mobility issues, thus

preventing full double bond conversion. Therefore, the rate constants are only fit to

the early conversion data, which will in turn only describe the cure kinetics until the

start of gelation.

The in-situ FTIR early conversion data for deoxygenated TMPTA, at 1 wt%

DMPA and 365 nm light with an intensity of 140 W/m2, obtained from Lee et al.

[18], was used to estimate the ratio of kp/
√
kt to be 0.4146 (m3/mol-s)0.5. The

experimental data points selected to be used in the fit were double bond conversion

values, less than 15 %, measured before the effects of gelation impacted the rate of

conversion. As it can be seen from Figure 14, the double bond conversion curve
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Figure 13: Changing kp while holding kp/
√
kt constant at 0.3135 gives equally good fit

to the monoacrylate conversion data as long as kp > 5m3/mol-s. The kp values tested
here are 1, 5 and 10, with 1 being the curve that is steepest. Once kp > 5m3/mol-s,
the curves are nearly identical.
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Figure 14: Rate constants fit to in-situ FTIR data of 1 wt% DMPA in deoxygenated
TMPTA give kp/

√
kt = 0.4146. Experimental data from Lee et al. [18].

starts rising slower after reaching 15%. Another detail to mention is the fact that

the original data set, from Lee et al. [18], contained some lag, and it did not contain

a clear indication of when the reaction started. Thus, the data shown here has an

estimated lag, which impacts the resulting kp from this fit. Due to this, only the value

for kp/
√
kt was obtained from this data set. The sample depth in the experiments was

only 15 μm, so the simulated vat was also 15 μm, and it was divided into 3 slices of 5

μm each. Dark reaction effects, and oxygen diffusion effects, were not included in the

simulations because the experimental data was in-situ and the system was monomer

was deoxygenated. Once again, the pattern search algorithm and Equation (43) were

both used to obtain the best fit between the double bond conversion predicted by the

ODEs and the selected experimental conversion data in Figure 14. As in the case of

the monoacrylates, several suitable values of kp could be used with the same kp/
√
kt,

as shown in Figure 15.
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Figure 15: Changing kp shows that for kp > 2, the fit is equally good when kp/
√
kt

is held constant at 0.4146. All rate constants have units of m3/mol-s. TMPTA
experimental data from Lee et al. [18].
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3.5.3 Fit to ex-situ FTIR data of TMPTA with oxygen

The ratio of kp/
√
kt, obtained for the triacrylate deoxygenated data, was used to fit

to the ex-situ FTIR data and obtain a suitable set of kp, kt, and ktoxy values. To

simulate the reaction volume, the 100 μm simulated vat was divided into ten layers,

each with a thickness of 10 μm. The simulated vat was 100 μm deep because of

the 100 μm spacer used in the ex-situ FTIR experiments. Oxygen diffusion in one

dimension between these slices was included, and the diffusion length of oxygen over

the time scale of the experiments was about 5E-5 m. Thus, the selected slice width

of 1E-5 m was sufficient to prevent any addition of oxygen during reaction in each

slice. As a result of this discretization, each slice had a different conversion, and

oxygen concentration value. The optimization was constrained so that ktoxy should

be greater than, or equal to, the rate constant for termination. The fit in Figure

16 is the best fit to all the experimental data sets for conversion values less than

60%. Again, the experimental data points selected to be used in the fit were points

measured before gelation impacted the rate of conversion. This meant that for the

lowest initiator concentration, the data points selected were all below 30% conversion,

and the earliest data points for the higher initiator concentrations were already at,

or above, 40% conversion.

Table 2: Estimated rate constants from all three data sets shown above.

Monomer kp (m3/mol-s) kt (m
3/mol-s) ktoxy (m3/mol-s) kp/

√
kt

EEA with O2 9.6 937.9 285520 0.3135
TMPTA w/o O2 1.61 14.34 – 0.4146
TMPTA with O2 0.26 0.39 2 0.4146

All the rate constants estimated in Chapter 3 are summarized in Table 2. The

difference in kp/
√
kt between monoacrylates and triacrylates means that for the same

kp in both monomers, the monoacrylates will have higher rates of termination than the

triacrylates. It is also important to note that although the kp/
√
kt values are unique
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Figure 16: Best fit of rate constants to all three data sets of DMPA in TMPTA. The
kp/

√
kt used here is from the deoxygenated data set, and the optimization has been

constrained so that the ktoxy is greater than or equal to kt. Here, kp = 0.26m3/mol-s,
kt = 0.39m3/mol-s, ktoxy = 2m3/mol-s.
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between the two triacrylate data sets, they don’t have the same kp and kt values as

the best fit. This is due to the fact that the deoxygenated data was extracted from

a literature source and it is unclear how long the lag is in the deoxygenated data.

Even if there is no lag due to inhibition, there might be some due to decomposition

kinetics. By removing a portion of the lag, as has been done in the data shown in

Figure 14, there is a need to use higher values of kp to match the fast rise.

3.6 KMC simulations and comparison to GPC data

3.6.1 Molecular weight data from GPC

Gel Permeation Chromatography (GPC) is a method used to analyze a partially

cured sample, and identify its average molecular weight. Solutions of 1, 5 and 10

wt% 2,2-Dimethoxy-1,2-diphenylethanone (DMPA) in EEA, and 0.5 wt% DMPA in

TMPTA were pipetted into the space between two glass slides separated by a 100 μm

Teflon R© spacer. A schematic of the cure setup is shown in Figure 25. The solution

was cured using a Spectra Physics Hg(Xe) lamp at an intensity of 140 W/m2, with

365 nm UV light for varying exposure time periods. The cured samples were allowed

to soak in tetrahydrofuran (THF) for 24 hours in order to extract all the monomer

and low molecular weight oligomers that were not a part of the solid network. After

soaking the sample for 24 hours, the THF was filtered to remove the solid particles,

and the excess THF was evaporated using a rotating evaporator. This concentrated

solution containing uncured monomers and lower molecular weight chains was injected

into a Silicon based GPC column. In general, the time required for each chain to

travel through the pores in the column depends on the size of the chain. The larger

chains have more momentum and therefore come out fastest. The number average

and weight average molecular weights of each sample are calculated in this manner.

Due to the loss of polymer which was of too high a molecular weight to be removed

from the network, the accuracy of the molecular weight determined for TMPTA using
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this method is questionable. The KMC simulation of TMPTA with oxygen in Figure

20, compares the molecular weight obtained from the GPC measurements of 0.5 wt%

TMPTA to the simulated value.

3.6.2 KMC simulations for TMPTA

All the simulations in Section 3.5, use the model based on ODEs in Equations (11)–

(15) and Equation (39). The estimated rate constants obtained in Section 3.5 were fit

to available double bond conversion data, since the ODE based model can only pre-

dict conversion for multifunctional monomers such as TMPTA. In contrast, the KMC

model described in Section 2.3 is capable of making molecular weight, and connec-

tivity, predictions in addition to double bond conversion predictions. A comparison

between the results from the ODE model and the results from the KMC model is

shown in Figures 17–20. All of the KMC simulation results shown here are average

values from three realizations, all with the same initial conditions except for the seeds

that are used in the random number generator of each simulation. The mechanism

of KMC simulations is outlined in Section 2. The use of random numbers in deciding

the sequence of reaction events is shown in Equations (37)–(38). Figures 17 and 18

are for the deoxygenated TMPTA with the same system size (number of monomers

in the reaction volume) but different kp values. A comparison between the two shows

that as kp is increased, the effects of the system size become more apparent. Figure

19 serves as a complement to Figure 17, as they both have the same kp but different

system sizes. Once again, a comparison between the two shows that increasing the

system size, while holding kp the same, decreases the fluctuations between multiple

realizations. Regardless of the system size, and the kp value being used, the ability

of the KMC to predict connectivity and molecular weight, unlike the ODE model, is

apparent in all of the plots. Figure 20 shows the KMC simulation of TMPTA with

oxygen, for 0.5 wt% DMPA.
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Figure 17: Results from a KMC simulation with a system size of 250,000 monomers
of deoxygenated TMPTA compared to results from the ODE model and experimental
data. kp = 5 m3/mol-s and kp/

√
kt = 0.4146; I0 = 140W/m2, λ = 365 nm, with 1

wt% DMPA. In-situ FTIR data is from Lee et al. [18] (A) The double bond conversion
calculated from the KMC model matches the values from the ODE model in a multi-
functional system. (B)&(C) Calculation of number average molecular weight requires
knowledge of the total number of polymer chains. In a multifunctional monomer, only
the KMC model can compute that information as seen in (C). In (B), the number
average molecular weight excluding the largest molecule is shown here in order to
replicate GPC data. Although kp/

√
kt is sufficient to predict monomer conversion

from KMC, molecular weight requires kp and kt separately. (D) The ODE model can
only compute available free double bonds, not free monomer since it lacks connec-
tivity information that KMC simulations provide. (E) [O2] = 0 here but, the results
from ODE and KMC simulations should match. (F) The average live radical concen-
tration, [P ∗•] from KMC and ODE simulations match. The fluctuations are due to
system size effects which are exacerbated by higher values of kp, which is 5 in this
case. Here, the number of live radicals is about 4 at steady state.
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Figure 18: Results from 250,000 monomer system size KMC simulation of deoxy-
genated TMPTA compared to solution from ODE model. kp = 10 m3/mol-s and
kp/

√
kt = 0.4146; I0 = 140W/m2, λ = 365 nm, with 1 wt% DMPA. In-situ FTIR

data is from Lee et al. [18] (A) The double bond conversion calculated from the
KMC model matches the values from the ODE model in a multifunctional system.
(B)&(C) Calculation of number average molecular weight requires knowledge of the
total number of polymer chains. In a multifunctional monomer, only the KMC model
can compute that information as seen in (C). In (B), the number average molecular
weight excluding the largest molecule is shown here in order to replicate GPC data.
Although kp/

√
kt is sufficient to predict monomer conversion from KMC, molecular

weight requires kp and kt separately. (D) The ODE model can only compute avail-
able free double bonds, not free monomer since it lacks connectivity information that
KMC simulations provide. (E) [O2] = 0 here but, the results from the ODE and KMC
models should match. (F) The average live radical concentration, [P ∗•] from KMC
and ODE simulations match. The fluctuations are due to system size effects which
are exacerbated by higher values of kp, which is 10 in this case. Here, the number of
live radicals is about 1 at steady state.
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Figure 19: Results from 450,000 monomer system size KMC simulation KMC simula-
tion of deoxygenated TMPTA compared to solution from ODEmodel. kp = 5m3/mol-
s and kp/

√
kt = 0.4146; I0 = 140W/m2, λ = 365 nm, with 1 wt% DMPA. In-situ

FTIR data is from Lee et al. [18]. The conclusions from plots (A)-(E) are still the
same as from Figures 17 and 18, but the system size effects become apparent in com-
paring (F) in both cases. The average live radical concentration is higher, about 10
at steady state, and the fluctuations due to system size effects are visibly reduced.
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Figure 20 highlights the necessity of having a unique kp, in addition to the best fit

kp/
√
kt when matching molecular weight data. In the present work, KMC simulations

are not utilized any further because a conversion cut-off value is adequate in process

planning and determining cure height as seen in Chapters 4 and 5.
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Figure 20: Results from 250,000 monomer system size KMC simulation KMC sim-
ulation of TMPTA with oxygen compared to solution from ODE model. kp =
0.26 m3/mol-s, kt = 0.39 m3/mol-s and ktoxy = 2 m3/mol-s. I0 = 140W/m2,
λ = 365 nm, with 1 wt% DMPA. The ex-situ FTIR data shown here is the same
data shown in Figure 16. The conclusions from plots (A)-(E) are still the same as
from Figures 17-19. The relatively small value of kp = 0.26 m3/mol-s means that
there are more radicals generated and the number of live radicals, which is continu-
ously rising reaches around 75 at the maximum time shown here. In comparison to
the deoxygenated case, it is clear from this plot that having the oxygen inhibitor de-
creases the frequency of propagation reactions. The lower kp used here, in comparison
to the previous figures, reduces the fluctuations between different realizations.
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CHAPTER IV

DETERMINING THE CONVERSION CUT-OFF USING

GEL TIME DATA

Section 1.2 referred to the development of a versatile model that is capable of predict-

ing cure height at various initial cure conditions. In Chapter 3, rate constants for the

kinetic ODE model were estimated from available FTIR data for EEA and TMPTA.

In this chapter, the kinetic ODE model with associated rate constants will be used

along with experimental gel time data to determine a critical conversion value that

can be used to predict part height.

Carothers and Flory described a gel as an infinitely large molecule that is insol-

uble [4, 5, 7]. Flory used this definition to estimate the degree of cure necessary for

the onset of gelation, based on the functionality of the reacting monomers [7]. The

estimated degree of cure differs in the cases with and without cyclization, and the

equations for the two critical conversion values are shown in Equations (44)–(45).

Once the resin starts to gel, the viscosity of the solution increases sharply, and the

cure undergoes a rapid transition from a liquid state to a solid state [31]. Linear

polymers, such as the ones formed by monoacrylates, usually undergo complete dou-

ble bond conversion, and these polymers do not gel. In contrast, multifunctional

monomers do not usually reach complete conversion of reactants due to the sharp

increase in viscosity [26, 31]. The cross-linking described in earlier sections implies

the dependence of onset of gel on the functionality of the monomer. In Equations

(44)–(45) below, αc and α̃c are the critical conversion values, with and without cy-

clization, described by Flory as the conversion values that need to be reached before

the resin can gel. αc and α̃c depend on the functionality of the monomer, f, which is
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defined as the number of reactants each monomer can interact with. When a radical

reacts with one end of a double bond, an active radical site is generated on the carbon

at the other end. Therefore, in the case of the triacrylate, TMPTA, being using here,

the functionality of each monomer is 6. Equation (44) is the critical conversion when

there is no cyclization. In contrast, Equation (45) is the critical conversion predicted

when there is cyclization. Since the focus in this project is on the early conversion

regime, until the onset of gelation, Equation (44) is probably more relevant. Equa-

tion (44) is also more suitable in the scope of this project because all the samples are

prepared without any solvent, and cyclization has been shown to be more significant

in dilute systems [29].

αc = 1/(f − 1) (44)

α̃c =
√
1/(f − 1) (45)

Table 3: Theoretical critical conversion values for acrylates of various functionalities
with and without cyclization.

f αc α̃c

Monoacrylate 2 ∞ ∞
Diacrylate 4 0.33 0.57
Triacrylate 6 0.20 0.44
Tetraacrylate 8 0.14 0.37

4.1 Gel time from microrheology experiments

Gel time experiments were performed by Dr. Ryan Slopek using microrheology, based

on the premise of rapid change in the viscosity of a cross-linking polymer, and the

procedure for these experiments is described elsewhere in more detail [26]. Briefly,

particle tracking microrheology is a method used to determine the amount of time

necessary to gel a monomer to a certain height. First, two glass slides separated

by a 120 μm spacer were used to contain the sample solution, a pre-polymer with
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nanoparticles. Subsequently, the sample solution was pipetted into the gap between

the slides. The nanoparticles, which were well dispersed in the pre-polymer, moved

due to particle vibrations, while their motion at a particular height was tracked

using a high speed camera attached to a microscope. UV light at 365 nm, and

various intensities, was used to cure the sample. The definition of “gel” used in the

microrheology experiments was when the viscosity was sufficiently high to counteract

the vibrations of the particles and they stopped moving. The time required for the

onset of gel was recorded as the gel time. The experimental data for TMPTA is

available at several initial conditions that are listed in Table 4. The conditions varied

in these experiments include initiator concentration, [In], intensity of the light source,

I0, and cure depth. All of these variables impact the initial rate of initiation, Ri, which

is also shown in Table 4. Ri relates to the rate of decomposition, Rd, as Ri = 2Rd,

because there are two radicals for each DMPA initiator molecule. Working curve plots

used in traditional stereolithography models, such as the schematic shown in Figure

21, do not incorporate initiator concentration or intensity. In contrast, Ri can be

used along with gel time to track the impact of initiation kinetics on gelation. Data

from Table 4 is consolidated in this manner and is shown in Figures 22, 24, and 27

along with comparisons to the part height predictions from various models.

4.2 Estimating the critical conversion cut-off value by fit-
ting to gel time data

If there is a fixed conversion value that defines the onset of gelation, the kinetics

model can be used to compute the exposure time required to gel a part to desired

height. This type of a degree of cure model is not usually used in stereolithography

models, where the critical energy required to obtain the desired part height for a

specific resin composition is determined through the Ec–Dp model:

Cd = Dpln

(
E

Ec

)
(46)
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Table 4: Gel time data from microrheology experiments [26].

I0 (W/m2) [In] wt% Depth of focus (μm) [O2] (mol/m3) Tgel (s) Ri (mol/m3-s)
10 5 112 1.05 9 0.177
10 5 108 1.05 8.5 0.179
10 5 70 1.05 7 0.200
10 5 45 1.05 6 0.216
10 5 20 1.05 4 0.232
10 5 8 1.05 3 0.240
10 8 60 1.05 4 0.297
10 6.5 60 1.05 4.5 0.255
10 5 60 1.05 5.3 0.206
10 4 60 1.05 6.2 0.171
10 3 60 1.05 7.5 0.133
10 2 60 1.05 9.67 0.092
10 1 60 1.05 15.2 0.047
10 0.5 60 1.05 23.3 0.024
10 0.25 60 1.05 38.5 0.012
4 2 60 1.05 22 0.036
8 2 60 1.05 12.43 0.073
8 1 60 1.05 21 0.038
4 2 60 1.05 22 0.037
6 2 60 1.05 13 0.055
8 2 60 1.05 10 0.073
10 2 60 1.05 9 0.092
12 2 60 1.05 7 0.110
14 2 60 1.05 6.5 0.129
10 8 60 0 0.167 0.206
10 6.5 60 0 0.33 0.189
10 5 60 0 0.67 0.164
10 4 60 0 1.167 0.143
10 3 60 0 2 0.116
10 2 60 0 3.5 0.084
10 1 60 0 6.167 0.045
10 0.5 60 0 8.5 0.024
10 0.25 60 0 9.83 0.012
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Figure 21: Schematic of typical working curve. A resin of fixed composition is exposed
to UV light at a specific intensity and wavelength for varying periods of time. The
parameters, Ec, and Dp, are matched to the experimental data to obtain a fit that
applies for that specific resin composition and light intensity.

Here, Cd is the resulting cure depth (part height), Dp is the penetration depth of the

light into the sample, Ec is the critical energy required before any cure is observed, and

E is the energy of the light source [17]. By fitting Ec and Dp to working curve data,

as shown schematically in Figure 21, the Ec–Dp model is capable of predicting part

thickness very precisely. However, as can be seen from Equation (46), the parameters

in the Ec–Dp model are not a function of the polymerization kinetics. Therefore, the

Ec–Dp model is not adaptable to changes in intensity or resin composition. In order to

determine optimal resin formulations without generating many such working curves

to obtain new parameters, it is necessary for a model to include reaction kinetics. One

example of an Ec–Dp model based on resin composition and kinetics, was a model

proposed by Lee et al. [17]. This model is similar in form to Equation (46), but

they compute the values of Ec and Dp using the reaction rate constants and intensity

parameters. Using the variables and notations pertinent to our system in Equations

(47)–(54), a similar relationship is derived here [17]. Recall from Equation (27) in
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Chapter 2, the steady state analysis of radical concentration was used to arrive at

the important quantity kp/
√
kt in terms of initiation and monomer concentration.

Equation (27) is integrated here, to the final monomer concentration at time t, to

obtain:

ln

(
[M ]0
[M ]

)
=

kp√
kt

√
kd[In] t (47)

Recognizing that [M ]0
[M ]

can be written in terms of conversion, given in Equation (28),

with the variable α substituted for conversion, Equation (47) can be rearranged as

follows:

ln

(
1

1− α

)
=

kp√
kt

√
kd[In] t (48)

Assuming that the critical conversion, αc, yields a critical cure depth, zc, the initial

rate of initiation, Ri, can be substituted for the term inside the square root in Equa-

tion (48) to get a direct relationship between Ri and the time of cure for a specific

αc and kp/
√
kt. This inter-dependence of Ri and time of cure is plotted in Figure 22.

−ln(1 − αc) =
kp√
kt

√
Ri

2
t (49)

Plugging in the full form of Ri from Equation (20) into Equation (49),

−ln(1− αc) =
kp√
kt

√
2.3φεI0e(−2.3ε[In]zc)

(
λ

NA h c

)
[In] t (50)

The cure depth zc or Cd as corresponding to Equation (46), in Equation (50) can be

rearranged to obtain,

zc = ln

[
2.3φεI0

(
λ

NA h c

)(
t kp/

√
kt

−ln(1 − αc)

)2
](

1

2.3ε[In]

)
(51)

Defining E as the maximum energy delivered per area, which is the incident energy,

E = I0t (52)

Dp from Equation (46) can be described in terms of the parameters related to the

initiator.

Dp =
1

2.3ε[In]
(53)
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The rest of the terms inside the logarithm are combined into Ec from Equation (46).

Ec =

(
2.3φε NA h c

λ t

)(−ln(1− αc)

kp/
√
kt

)2

(54)

A unit analysis on the above relationships for Cd, E, Dp and Ec shows that Cd

and Dp have units of length, while E and Ec have units of energy per time. Thus, the

above derivation provides a correlation between the kinetics of the reaction and the

resulting cure depth. However, it is important to note that this analysis is based on

the assumption that the radical concentration is at steady state. At the early stages of

reaction, before the onset of gelation, the radical concentration cannot be expected to

reach a steady concentration. In addition, the kinetics pertaining to oxygen inhibition

cannot be included in the steady state analysis. Due to both these limitations, the

gel time predicted by the steady state model does not match the deoxygenated or

oxygenated microrheology data as seen in Figure 22.

Although the steady state model fails to make satisfactory part height predictions

a critical conversion value can still be identified to determine the cure depth by using

the double bond conversion predictions from the ODE model. The rate constants

suitable for use with the ODE model were estimated in Chapter 3, and they are

used here to fit the degree of conversion required to match the gel time values and

part height values listed in Table 4. To do this, the ODEs in Equations (11)–(15),

and Equation (39), were used to predict the conversion profile in several layers of a

120 micron deep vat (based on the spacer used in the microrheology experiments),

as shown in Figure 23. Oxygen diffusion in the vertical dimension was included

in the simulation by dividing the vat into slices, and allowing transfer of oxygen

between the layers. Thus, each one of the layers had a different conversion and

oxygen concentration. In Chapter 3, when rate constants were being estimated by

fitting to the FTIR data, the conversion over all the layers was averaged and dark

reactions were included in the “ex-situ simulations”. In contrast, the gel time from

microrheology records the time at the instant gelation starts to occur. Therefore,
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Figure 22: Steady state model results for TMPTA using the kp/
√
kt of 0.4146 deter-

mined in Chapter 3 and αc = 12%. The steady state model does not include oxygen
inhibition, and it fails to predict conversion before gelation.

UV light at 365 nm

Glass slide

Cured polymer

Figure 23: Schematic of the cure setup used in the experiments and the simulations.
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Figure 24: Estimating conversion cut-off from fit to microrheology data. Using the
kp/

√
kt of 0.4146, kp = 0.26 m3/mol-s, kt = 0.39 m3/mol-s and ktoxy = 2 m3/mol-s

determined in Chapter 3 for TMPTA, a 12% conversion cut-off was determined by
fitting to the microrheology data of TMPTA with oxygen.

dark reactions are not included in the simulations here. Also, the simulation results

from all the layers are not averaged, since the data corresponds to cure at the depth

that the microscope is focused on. Lastly, the simulated vat was divided into 24 layers

of 5 microns each, and further discretization did not yield a significant difference in

the results.

Using the Ri values for oxygenated TMPTA in Table 4, the critical conversion

cut-off value was varied in the simulations to fit to the experimental gel time, Tgel,

while using the rate constants from the fit to the FTIR data. When fitting the

conversion cut-off value to match the microrheology data, the criterion was to find a

single cut-off value that matches gel times of the entire data set. In this process it

was determined that the Tgel values less than 1 second required matching conversion

cut-off values which were too low to match the remaining gel time data. The fast
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Figure 25: Schematic of blanket cure experiments in the presence of O2.

kinetics at these high regimes might lead to a significant change in the value of

Ri from time zero to the time of cure. Therefore, the deoxygenated microrheology

data set was excluded when fitting the conversion cut-off value to the microrheology

data. A further analysis of this data with blanket cure experiments is provided

in Section 4.3. The resulting double bond conversion cut-off obtained from fitting

to the microrheology data of TMPTA with oxygen, was 12%, while Flory’s theory

suggests a double bond conversion cut-off value of 20% for triacrylates (Table 3) [7].

In comparison to other acrylate systems, the conversion cut-off obtained from the fit

to microrheology data is realistic. Tang et al. described a double bond conversion

cut-off of 9% for tetracrylates. However, Flory’s theory suggested a 14% double bond

conversion cut-off for tetraacrylates (Table 3) [7]. This disparity led to the conclusion

that an infinite network is not necessary to form a solid part [28]. Increasing the

conversion cut-off value in the ODE simulations caused the simulated Tgel to increase.

In addition, the fit was comparitively worse in the lower Ri regions because the Tgel

increase was more significant there. However, the simulation results, shown in Figure

24 with 12% double bond conversion cut-off match the oxygenated data very well for

the full range of Ri values.
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Figure 26: Schematic of nitrogen purging setup. The tight fitting lid has recesses that
can be opened for curing after deoxygenation.

4.3 Correlation between cure depth from microrheology and
part height

We conducted blanket cure experiments using the gel time from microrheology as the

time of exposure, in order to confirm some of the deoxygenated data points shown

in Figure 24 and also to correlate the cure depth from microrheology to a solid part

height. In order to explain the poor fit between the simulation and experimental data

for the deoxygenated TMPTA shown in Figure 24, nitrogen purged TMPTA samples

were cured at several of the conditions listed in Table 4, and the results are shown in

Table 5. The setup consisted of a nitrogen gas purging chamber with a vat to contain

TMPTA as shown in Figure 26. Nitrogen gas flowed through the head space above

the vat, and, over time, drove the oxygen out of the monomer. The vat containing

TMPTA was purged for three hours before curing the sample in the experiments

described here.

After we followed the above purging procedure, and cured for the desired exposure

time, the glass slides resting on the surface of the monomer pool were pulled off, and

a jet of air was used to remove any monomer from the surface of the solid part. The

part was rinsed with isopropanol and dried with compressed air, just before being

measured with a TalySurf Profilometer. A sample of 8 wt% TMPTA deoxygenated

in the above fashion was cured for 0.2 seconds to mimic the data set in Row 27

of Table 4, but there was no observed cure. To confirm that this was not due to
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Table 5: Cure height from blanket cure experiments.

I0 (W/m2) [In] wt% [O2] (mol/m3) Cure time (s) Cure height (μm)
10 0.25 60 0 9.83
10 5 1.05 9 113
10 5 1.05 8 98
10 5 1.05 6 64
10 5 1.05 4 0
10 8 0 3.5 300
10 8 0 1 150
10 8 0 1 140
10 8 0 1 160
10 2 0 3.5 110
10 2 0 3.5 140
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Figure 27: Blanket cure experimental data of TMPTA is shown here in addition
to microrheology data. The blanket cure data for TMPTA with oxygen shows a
good match to the microrheology data. However, the part height from the deoxy-
genated blanket cure experiments was thicker than expected from the deoxygenated
microrheology data set. Blanket cure experiments of deoxygenated TMPTA were also
conducted for higher Ri values, but there was no observed cure.
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insufficient deoxygenation, another initial condition from Table 4 on row 32, with 2

wt% initiator solution of TMPTA was exposed to the gel time of 3.5 seconds. The

resulting part height was not 60 microns, but 110 microns. This high part height

result suggested that the energy dose was sufficient to cure to the instantaneous cure

depth, shown in Table 4, and also led to possible additional solidification from dark

reactions. However, if the vat was not sufficiently deoxygenated, the oxygen inhibition

reactions would take precedence over propagation due to dark reactions. This lack of

oxygen inhibition reactions suggests that the deoxygenation method was thorough,

but some of the exposure times listed in Table 4 did not yield a solid part because

the required critical energy was not supplied. The deoxygenated sample undergoes

rapid reaction and is susceptible to significant changes in part height from minor

fluctuations, as seen in Table 5, therefore, Ri alone may not be sufficient to capture

the reaction behavior of the deoxygenated data set. Thus, the deoxygenated data set

was disregarded in determining the conversion cut-off, and the discrepancy between

the model prediction and deoxygenated experimental data is observable in Figure 27.

The elaborate setup required for the deoxygenated experiments was not necessary

for the experiments with TMPTA with oxygen. Instead, two glass slides with a 1 mm

glass spacer were used to hold the sample as shown in Figure 25. Then, a solution of 5

wt% DMPA in TMPTA was pipetted into the space between the slides. Experiments

were run to encompass the initial conditions shown in rows 1-5 of Table 4, and the

results are shown in Table 5. All the samples were exposed to light at 10 W/m2,

for different exposure times. After exposure, the excess monomer was poured out

and a nitrogen gun was used to remove any monomer from the surface of the solid

part. Just before measurement with a TalySurf profilometer, the part was rinsed with

isopropanol and dried with compressed air, as in the case with deoxygenated samples.
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Figure 28: Comparison between part height from microrheology and blanket cure. 5
wt% DMPA in TMPTA cured with intensity of 10 W/m2 at 365 nm.

The comparison between the part height from blanket cure experiments and mi-

crorheology experiments is shown in Figure 28. Although there was a lack of agree-

ment, in the deoxygenated case, between part height from blanket cure and cure

depth from microrheology , the one-to-one correlation between the data from the two

types of experiments, in the case when oxygen is present, is consistent. The measured

part height from the blanket cure experiments shows us that part height is measured

accurately with microrheology, at least above 60 μm. This implies that the conversion

cut-off obtained from the fit to microrheology data can be used to make part height

predictions for blanket cure experiments. The rate of initiation, Ri, was necessary in

order to combine all the variables that impact gel time, and part height, when char-

acterizing the oxygenated TMPTA data. However, the fast kinetics of deoxygenated

TMPTA seem to involve other factors that are not incorporated into Ri. In the scope

of this project, systems with oxygen are of more interest because deoxygenation of

the sample before cure would be an additional step in the process. Furthermore,
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additional modifications would have to be implemented to ensure that no oxygen en-

ters the system during the cure. Yet another added benefit of having oxygen in the

sample, is that it acts as a natural inhibitor, and provides greater control over the

resulting part height. As observed from repeated experiments using deoxygenated

TMPTA, even random fluctuations in the cure environment can lead to significant

difference in the resulting part height. Using the double bond conversion cut-off of

12% from this chapter, and rate constants from Chapter 3, part height predictions

can be made for oxygenated TMPTA samples. Chapter 5 has further discussion re-

garding the factors that impact part height, and also part height predictions from a

joint fit to the aforementioned experimental data.
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CHAPTER V

PART HEIGHT PREDICTIONS WITH THE KINETIC

MODEL

5.1 Effect of initiator concentration, intensity and expo-
sure time

The rate constants and conversion cut-off value for TMPTA from Chapters 3 and 4

provide the necessary parameters for predicting part height. Figures 29 and 30 are

plots of part height as a function of energy dose and initiator concentration for a

system without and with oxygen, respectively. A similar plot was shown by Lee et

al. for a deoxygenated system using the steady state model [17]. However, since the

steady state assumption was shown to be inapplicable to the scope of this project in

Section 4.2, the effects of energy dose and initiator concentration on part height are

examined through use of the ODE model developed in the previous chapters.

Figures 29 and 30 show reaction simulations of TMPTA with initiator concentra-

tions in the range of 0.25-8 wt%. The varying energy doses shown are the product of

the incident intensity of 10 W/m2 and different exposure times, based on the equa-

tion for energy dose provided in Equation 52. These settings represent the values in

Rows 7–15 of Table 4. The rate constants in m3/mol-s used in these simulations are

kp of 0.26, kt of 0.39 and ktoxy of 2. For each energy dose in Figures 29 and 30, as

the initiator concentration is increased, the part height does not continually increase.

Instead, there is a clear optimum concentration of initiator for each energy dose that

will produce the thickest part. This is a trend that the Ec–Dp model cannot provide

without experimental data for each one of the experimental conditions.

The separate influence of the components of energy dose, namely the intensity and
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Figure 29: Effect of energy dose and initiator concentration on deoxygenated TMPTA.
Rate constants from Row 3 of Table 2 and conversion cut-off = 12%.

exposure time is explored in Figures 32 and 33. In Figure 32 the simulated exposure

time is changed for each intensity so that the total value for energy is always equal

to 100 J/m2. Although the energy delivered is the same for all the points in Figure

32, the resulting part height values for each combination of intensity and exposure

time are different. Figure 33 contains experimental blanket cure data that have all

been exposed to the same energy dose of 100 J/m2, with different intensity and cure

times. Curing at low intensity, for a long time yields a thicker part height than curing

at high intensity for a shorter exposure time. The part height increases again at the

higher intensity values which might be due to the faster reaction conditions, and

higher incidence of dark reactions. From Figures 32 and 33 it can be seen that E,

which is central to the working curve plots used to fit the parameters Ec and Dp, is

independently influenced by its components I0 and exposure time. Looking at this

from a mechanistic perspective, the reason for this behavior lies in the competing rates
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Figure 30: Effect of energy dose and initiator concentration on TMPTA with [O2]=
1.05 mol/m3. Rate constants from Row 3 of Table 2 and conversion cut-off = 12%.
The final part height is lower here than in the deoxygenated case, but there is still
an optimum initiator concentration for each energy level.
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Figure 31: E= 100 J/m2 for all the simulated curves shown here, and [In]=5 wt%.
The corresponding exposure time for each of the intensities is calculated as t =
E/Intensity. Although all of the simulations contain the same initiator concentra-
tion, and the energy dose is the same, the concentration of live radicals in the system
is different. At lower intensities, there are fewer live radicals in the system, whereas
at higher intensities, there are a more. This means that at the higher intensities, the
probability of a termination reaction is increased, thus changing the resulting part
height as seen in Figure 32.

of initiation, propagation and termination. When the rate of initiation is low due to

lower intensity, the concentration of live radicals in the system at any given time will

be lower. Thus the likelihood of these radicals propagating via reaction with double

bonds is high. On the other hand, when the rate of initiation is high due to a higher

intensity, there are more live radicals in the system and the likelihood of radical

termination is increased. This can be seen from the plot of radical concentration

versus time at various intensities in Figure 31.

Thus, the ODE model shown here, along with the rate constants and conversion

cut-off from Chapters 3 and 4 captures the influence of intensity, exposure time, and

initiator concentration on the resulting part height. Collectively, Figures 29–33 show
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Figure 32: E= 100 J/m2 for all the simulated points here. Exposure time, t =
E/Intensity.
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Figure 33: E= 100 J/m2 for all the blanket cure data points shown here. Exposure
time, t = E/Intensity.
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why the Ec–Dp model, fit to data points from a single resin composition, cannot be

used to predict part height across varying [In] and I0.

5.2 Simulated working curves from the ODE model and Ec–
Dp model

So far, we have shown that the ODE model presented here accounts for the relevant

reaction kinetics, and that it can be used as a tool for process planning to determine

optimum resin formulations and appropriate light intensities to use. There is still a

question remaining of whether this ODE model can make better part height predic-

tions than the Ec–Dp model can. In Ec–Dp models, the parameters Ec and Dp are

obtained by fitting to part height and energy dose experimental data. Accordingly,

when Ec and Dp were fit to the data from Rows 1–6 of Table 4, all at I0 of 10 W/m2,

and at 5 wt% DMPA, the resulting Ec value was 31 J/m2 and Dp was 96.7 microns.

However, since Ec–Dp models are usually intended to be fit to blanket cure experi-

mental data, if Ec and Dp are fit to the blanket cure data in Figure 28, the Ec value

increased to 39 J/m2 and Dp increased to 138 microns. These Ec and Dp values were

used to generate the simulated working curve, and the results are shown in Figure 34.

Part height predictions for the same conditions were also generated using the ODE

model, and those simulation results are also shown in Figure 34. As expected, the

Ec–Dp model, which has been customized for these data points, fits the experimental

data slightly better than the ODE model does. This is because the parameters used in

the ODE model have been fit to the entire range of FTIR and microrheology data of

TMPTA, rather than the selected blanket cure data shown here. For the data points

shown here, the simulation from the ODE model underpredicts the time required to

cure to the desired part height at higher thicknesses.

This suggests that the ODE model is more appropriate for selecting which initiator

concentration levels or intensity to work with, but the Ec–Dp model is better at part

height predictions once the particular resin composition has been chosen. Once the
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Figure 34: Part height prediction with both ODE model and Ec–Dp model. The
ODE model uses the parameters from Chapters 3 and 4 with kp= 0.26 m3/mol-s,
kp/

√
kt = 0.4146 and convc = 12%.
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process conditions are selected using the ODE model, a working curve should be

constructed using experimental data points at the selected resin composition and

intensity for varying exposure time points. Ec and Dp can be fit to this particular

process, and these variables can then be used in subsequent part height predictions.

5.3 Can the fit from the ODE model be improved?

5.3.1 Fitting to different data sets together

Noting that the Ec–Dp model makes better final part predictions, one should ask

whether the ODE model can be improved by fitting to the FTIR data and the selected

microrheology data sets together or by fitting only to the blanket cure data in the

same way that the Ec–Dp model is fit. In Section 5.2, part height predictions shown

in Figure 34 were obtained using the rate constants from a fit to the FTIR data,

and the conversion cut-off from fitting to all the oxygenated TMPTA microrheology

data points separately. As shown in earlier chapters, the kp/
√
kt was first obtained

from the deoxygenated FTIR data and then the kp, kt and ktoxy were fit using that

information. Instead of obtaining the parameters step-wise in this manner, in the

joint fit, the kp, kt, ktoxy as well as the conversion cut-off were all varied in the

optimization to jointly match data from FTIR and microrheology data from Rows

1–6 of Table 4. The new kp/
√
kt of 0.4659 is slightly higher than the previous value of

0.4612, but the ktoxy is lowered to 1 m3/mol-s. The lower value of ktoxy is lower due

to the optimization trying to match the data sets from FTIR at the higher initiator

concentrations of 5 and 10 wt%. The conversion cut-off value from the joint fit is

28%, which is higher than the theoretical αc of 20% given in Chapter 4. Based on the

discussion in Chapter 4, the conversion cut-off required to make a solid part should

be lower than the theoretical value, and this is supported from the conclusions by

Tang et al. as well [28]. Therefore, the higher conversion cut-off from the joint fit

makes less sense physically. Overall, comparing the fit from the ODE model using
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Figure 35: Part height prediction with both ODE model and Ec–Dp model. Here,
the ODE model uses parameters from the joint fit to the IR data sets as well as the
microrheology data in Rows 1–6 of Table 4.

parameters from the joint fit to the blanket cure data, the result in Figure 35 shows

that there is only a slight improvement as compared to the results in Figure 34.

The new rate constants are better suited to match the data from the higher

initiator concentrations in the ex-situ FTIR data, and this is evident from the lower

RMSE value shown in Table 7. A comparison of Figure 39, (a) and (b), shows that

in the case of the FTIR data with oxygen, the lag in the 0.5 wt% DMPA data set is

slightly less pronounced in the joint fit due to the higher ratio of kp/
√
kt. The fit to

the entire microrheology data set is still very good compared to the previous fit as

seen in Figure 40. However, contrary to expectations, the conversion cut-off obtained

from the joint fit is higher than the theoretical value, and this does not make sense

physically. Therefore, although the joint fit matches both the data sets better overall,

the parameters obtained from the earlier fit are more realistic.
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Figure 36: Part height prediction with both ODE model and Ec–Dp model using
parameters fit to the blanket cure data. The part height predictions are noticeably
better than the predictions in Figure 34 and Figure 35, but this comes at the cost of
decreased versatility in the ODE model. The values of the parameters are as follows:
kp = 0.26 m3/mol-s, kt = 0.0013 m3/mol-s, ktoxy = 5.39 m3/mol-s and convc = 8.2%.
When these parameters are used to predict the double bond conversion and gel time,
the corresponding RMSE values have increased as shown in Table 7.
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If the parameters in the ODE model are fit to the blanket cure data directly, in

the same way that the Ec–Dp model parameters are, the rate constants change to

the values shown in Figure 36, while the conversion cut-off remains about the same.

Figure 36 has the part height predictions with these new parameters, and the fit is

greatly improved in comparison to the joint fit results in Figure 35. The corresponding

RMSE values for predicted double bond conversion and gel time data are shown in

Table 7 and the fit to the FTIR data and microrheology data has deteriorated. A

comparison of Figure 39, (a) and (c) shows that the lag in the lowest initiator curve

has increased in (c). Once the oxygen quenching phase is completed, the reaction

proceeds very quickly. This is due to the kp/
√
kt in Figure 39 (c) being much higher

at 7.2. On the other hand, the kp/
√
kt in Figure 39 (a) is only 0.4146. Figure 40 (a)

and (c) show that the fit to the microrheology data with the parameters from fitting

to blanket cure data alone is also not very good. Table 7 contains a quantitative

comparison of the RMSE values using the parameters fit to the blanket cure data.

The RMSE values confirm that the parameters from fitting to blanket cure data alone

do not predict the conversion and gel time accurately. However, Figure 36 shows that

if the parameters of the ODE model are fit to the blanket cure results for a specific

cure recipe, then it is capable of making precise part height predictions just as the

Ec–Dp model does. In contrast, the parameters obtained from a more mechanistic fit

to the available double bond and microrheology data are capable of more versatile

predictions and they will be able to make predictions in a wider range of cure recipes.

5.4 Effect of temperature on part height predictions

The rate constants described in earlier chapters did not include a dependence on

the temperature of the reaction volume. As a final check on how the heat released

during polymerization affects the rate of cure, an Arrhenius relationship was intro-

duced to link the rate constants to the temperature in the simulation volume. This
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section contains a quantitative description of the amount of heat generated during

polymerization, the amount of temperature increase, and the associated effect of this

temperature increase on the rate constants. the general heat balance equation used

is shown in Equation 55.

ρCp
dT

dt
= k

d2T

dz2
+ΔHpRp (55)

kp = kp0exp

(
EAp

R

(
1

T0

− 1

T

))
(56)

kt = kt0exp

(
EAt

R

(
1

T0
− 1

T

))
(57)

Table 6 contains a description of the parameters used here and their values. The

Arrhenius dependence of the rate constants is shown in Equations (56) and (57). The

reaction volume was divided into slices in one dimension again, as in Figure 23, and

the volume inside each slice was assumed to be well-mixed. In order to ensure that this

assumption holds true, the thermal diffusion length for the fastest reaction time of 0.5

seconds was calculated to be 7 microns, using the thermal conductivity listed above.

Thus, slices of 5 microns were chosen to make sure there was sufficient mixing. Heat

transfer was allowed between adjacent slices, and the thermal conductivity parameter

determined the rate of heat flux.

Table 6: The above parameters values were used in determining the temperature
increase in the reaction volume.

Parameter Description Value Units Source
ρ Density 1.018 g/cc Sartomer
Cp Heat capacity 1.7 J/g-K [15]
k Thermal conductivity 0.123 W/m-K [15]
ΔHp Heat of polymerization 2.58e5 J/mol [15]
EAp Activation energy for kp 1627 J/mol-K [28]
EAt Activation energy for kt 2103 J/mol-K [28]
T0 Initial temperature 298 K –
R Gas constant 8.314 J/mol-K –
kp0 Value at 298 K 0.26 m3/mol-s Chapter 3
kt0 Value at 298 K 0.39 m3/mol-s Chapter 3
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Figure 37: Temperature change in a simulated volume of 5 wt % DMPA with oxygen,
being cured for 4 seconds. The top and bottom slides at the boundaries are assumed
to be at room temperature.
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Figure 38: Part height predictions with rate constants that depend on the temperature
of the reaction volume.

A sample temperature profile is shown in Figure 37 for a system of 5 wt % DMPA,

incident intensity of 10 W/m2 and cure time of 5 seconds. The rate constants did not

increase much for the range of temperature increase shown here, and the impact on

the simulated double bond conversion or gel time was very minimal. Table 7 contains

the RMSE values when comparing FTIR experimental data to simulated double bond

conversion data generated by using the temperature dependent rate constants. It also

contains the RMSE values when comparing microrheology data to simulated gel time

data generated using the temperature dependent rate constants. Figure 38 contains

the comparison of predicted part height to experimental blanket cure data while using

the temperature dependent parameters. There is no difference in the predicted part

heights in Figures 34 which uses the original parameters fit separately to all the data

sets, and Figure 38 which uses the parameters that are influenced by temperature.

71



Table 7: Comparison of blanket cure fit parameters and joint fit parameters fit from
joint fit parameters to parameters from Chapters 3 and 4. Estimated rate constants
from all three data sets shown above.

Fit type Separate Joint Blanket cure Temperature
TMPTA with O2 21.28 16.56 57.2 21.28
Microrheology Rows 1–6 of Table 4 0.58 0.66 0.33 0.52
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Figure 39: Comparison of TMPTA parameters. (a) Simulation results from estimated
rate constants in Chapter 3. kp = 0.26m3/mol-s, ktoxy = 2m3/mol-s, and kp/

√
kt =

0.4146 (m3/mol-s)0.5. (b) The lag in the simulation is reduced due to the lower ktoxy =
1m3/mol-s. The joint fit kp/

√
kt is 0.4659 (m

3/mol-s)0.5 and kp = 0.26m3/mol-s. (c)
Simulation using parameters from fit to blanket cure data only. kp = 0.26 m3/mol-s,
kt = 0.0013m3/mol-s, ktoxy = 5.39m3/mol-s and convc = 8.2%. (d) Simulation using
rate constants that have an Arrhenius dependence on temperature of the system.
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Figure 40: Comparison of simulations to match microrheology data. (a) Fit to mi-
crorheology data shown in Chapter 4, kp = 0.26 m3/mol-s, ktoxy = 2 m3/mol-s,
kp/

√
kt = 0.4146 (m3/mol-s)0.5 and convc = 12%. (b) Simulation using joint fit pa-

rameters, kp = 0.26m3/mol-s, kp/
√
kt = 0.4659 (m3/mol-s)0.5, ktoxy = 1m3/mol-s

and convc = 28%. (c) Simulation using parameters from fit to blanket cure data
only. kp = 0.26 m3/mol-s, kt = 0.0013 m3/mol-s, ktoxy = 5.39 m3/mol-s and convc
= 8.2%. (d) Simulation using rate constants that have an Arrhenius dependence on
temperature of the system.
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CHAPTER VI

CONCLUSION

The aim of this project was to create a model that would be useful in process plan-

ning for stereolithography applications. The need for this versatile model arose from

the limitations of currently used Ec–Dp models which make very precise part height

predictions, but cannot be used to determine the most effective resin composition and

intensity, collectively known as the cure recipe. Each cure recipe has a unique Ec and

Dp fit, which is determined by fitting to experimental data. However, when there is

a question regarding which cure recipe is ideal, running experiments at multiple cure

recipes is inefficient.

The ODE model presented here is a solution to this limitation, as it is capable of

predicting part height as a function of all the variables that impact cure. The rate

constants necessary for this model were estimated by fitting to conversion data from

FTIR of TMPTA with and without oxygen. At the onset of the project, molecular

weight was proposed as a more accurate predictor of part height, but given the data

available currently, conversion appears to be sufficient. In future studies, the KMC

model is a viable method to predict molecular weight, and a few simulations predicting

molecular weight evolution during the reaction are shown in Chapter 3.

The critical conversion value, to indicate that the polymer has cured, was esti-

mated by fitting to gel time data from microrheology. In order to justify the use of

gel time data from microrheology to estimate the critical conversion value, we exam-

ined the correlation between part height and gel point. This resulted in three key

outcomes. First, the initial rate of initiation, Ri, combines all the parameters that
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impact part height for oxygenated TMPTA, but Ri alone is insufficient when predict-

ing the rapid cure and onset of gel in deoxygenated TMPTA. Second, deoxygenated

data is not suitable for use in processes where accurate part height needs to be made

because the lack of inhibition leads to rapid reaction, and minor fluctuations in com-

position result in large changes in height. Third, the blanket cure data, of TMPTA

with oxygen, matched the microrheology data, which justified the use of the extensive

microrheology data to determine the conversion cut-off.

In the process of determining a critical conversion value, we showed that a steady

state model is insufficient to predict part height for the deoxygenated case. The as-

sumption that the radical concentration is at steady state fails in the early conversion

regime, before the onset of gel, which is the region of interest here. In addition, the

steady state model is not applicable to systems with oxygen because the analytical

solution does not incorporate oxygen inhibition kinetics, and therefore cannot predict

the inhibition lag time. Thus, correlating Ec and Dp to kinetic parameters through

the steady state assumption does not yield accurate part height predictions.

Although it was already known that Ec and Dp models are specific to each cure

recipe, we further showed why a working curve, which is the basis for Ec–Dp models,

is not adaptable to changes in cure recipe without experimental data at the new

conditions. For instance, when the same energy was delivered through combinations

of different intensities and exposure time, the resulting part heights were different.

Specifically, having a higher intensity, with a shorter exposure time resulted in smaller

part height. This was shown to be due to the competing effects of propagation

and termination which depended on the rate of radical generation. Similarly, when

intensity and exposure time were held constant, increasing initiator concentration

showed that there is an optimum concentration for each energy dose that yields

the thickest part height. This initiator concentration is not necessarily the highest

concentration, and this is due to the loss of light to initiator molecules. The benefit
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of having more initiators, and therefore more radical generation is outweighed by loss

of intensity due to absorbance by the initiator molecules at a critical point. This is

an important process behavior that the process designer should be aware of, so that

both the initiator and energy are used efficiently.

The final ODE model which incorporates oxygen diffusion and attenuation of

intensity with cure depth is a versatile model that is a function of factors such as cure

depth, z, incident intensity, I0, and initiator concentration, [In]. This model is useful

when deciding which combination of settings is best suited for the desired product.

Once the process parameters are decided upon, it can be used in the same way that

the Ec–Dp model has been used, to make part height predictions. Although the model

predictions shown in this thesis are mostly related to one dimensional variations in

oxygen concentration and temperature, the model contains all the parameters needed

for two dimensional or three dimensional cure predictions. Current stereolithography

process designs use the Ec–Dp model to translate a computer aided design (CAD)

drawing into a bitmap of the exposure profile. By substituting the mechanistic model

presented in this thesis in place of the existing Ec–Dp model, solid objects of various

geometries can be generated from different cure recipes.
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